Heat Exchangers, Coolers and Process Heaters

Process heaters and heat exchangers preheat feedstock in distillation towers and in refinery processes to reaction temperatures. Heat exchangers use either steam or hot hydrocarbon transferred from some other section of the process for heat input. The heaters are usually designed for specific process operations, and most are of cylindrical vertical or box-type designs. The major portion of heat provided to process units comes from fired heaters fueled by refinery or natural gas, distillate, and residual oils. Fired heaters are found on crude and reformer preheaters, coker heaters, and large-column reboilers.

Heat also may be removed from some processes by air and water exchangers, fin fans, gas and liquid coolers, and overhead condensers, or by transferring heat to other systems. The basic mechanical vapor-compression refrigeration system, which may serve one or more process units, includes an evaporator, compressor, condenser, controls, and piping. Common coolants are water, alcohol/water mixtures, or various glycol solutions.

A means of providing adequate draft or steam purging is required to reduce the chance of explosions when lighting fires in heater furnaces. Specific start-up and emergency procedures are required for each type of unit. If fire impinges on fin fans, failure could occur due to overheating. If flammable product escapes from a heat exchanger or cooler due to a leak, fire could occur. Care must be taken to ensure that all pressure is removed from heater tubes before removing header or fitting plugs. Consideration should be given to providing for pressure relief in heat-exchanger piping systems in the event they are blocked off while full of liquid. If controls fail, variations of temperature and pressure could occur on either side of the heat exchanger. If heat exchanger tubes fail and process pressure is greater than heater pressure, product could enter the heater with downstream consequences. If the process pressure is less than heater pressure, the heater stream could enter into the process fluid. If loss of circulation occurs in liquid or gas coolers, increased product temperature could affect downstream operations and require pressure relief.